Neuroprotective action of N-acetyl serotonin in oxidative stress-induced apoptosis through the activation of both TrkB/CREB/BDNF pathway and Akt/Nrf2/Antioxidant enzyme in neuronal cells
نویسندگان
چکیده
N-acetyl serotonin (NAS) as a melatonin precursor has neuroprotective actions. Nonetheless, it is not clarified how NAS protects neuronal cells against oxidative stress. Recently, we have reported that N-palmitoyl serotonins possessed properties of antioxidants and neuroprotection. Based on those, we hypothesized that NAS, a N-acyl serotonin, may have similar actions in oxidative stress-induced neuronal cells, and examined the effects of NAS based on in vitro and in vivo tests. NAS dose-dependently inhibited oxidative stress-induced cell death in HT-22 cells. Moreover, NAS suppressed glutamate-induced apoptosis by suppressing expression of AIF, Bax, calpain, cytochrome c and cleaved caspase-3, whereas it enhanced expression of Bcl-2. Additionally, NAS improved phosphorylation of tropomyosin-related kinase receptor B (TrkB) and cAMP response element-binding protein (CREB) as well as expression of brain-derived neurotrophic factor (BDNF), whereas the inclusion of each inhibitor of JNK, p38 or Akt neutralized the neuroprotective effect of NAS, but not that of ERK. Meanwhile, NAS dose-dependently reduced the level of reactive oxygen species, and enhanced the level of glutathione in glutamate-treated HT-22 cells. Moreover, NAS significantly increased expression of heme oxygenase-1, NAD(P)H quinine oxidoreductase-1 and glutamate-cysteine ligase catalytic subunit as well as nuclear translocation of NF-E2-related factor-2. Separately, NAS at 30mg/kg suppressed scopolamine-induced memory impairment and cell death in CA1 and CA3 regions in mice. In conclusion, NAS shows actions of antioxidant and anti-apoptosis by activating TrkB/CREB/BDNF pathway and expression of antioxidant enzymes in oxidative stress-induced neurotoxicity. Therefore, such effects of NAS may provide the information for the application of NAS against neurodegenerative diseases.
منابع مشابه
Pharmacological and Molecular Evidence of Neuroprotective Curcumin Effects Against Biochemical and Behavioral Sequels Caused by Methamphetamine: Possible Function of CREB-BDNF Signaling Pathway
Introduction: The neuroprotective impact of curcumin and the role of CREB (cyclic AMP response element binding protein)-BDNF (brain-derived neurotrophic factor) signaling pathway was evaluated in methamphetamine (METH)-induced neurodegeneration in rats. Methods: Sixty adult male rats were randomly divided into 6 groups. While normal saline and 10 mg/kg METH were administered intraperitoneally ...
متن کاملCrocin Acting as a Neuroprotective Agent against Methamphetamine-induced Neurodegeneration via CREB-BDNF Signaling Pathway
Methamphetamine (METH) abuse causes neurodegeneration. Medicinal herb such as crocin has neuroprotective properties. The current study evaluates the role of CREB-BDNF signaling pathway in mediating the neuroprotective effects of crocin against METH-induced neurodegeneration in rats. Sixty adult male rats were divided randomly into group 1 and group 2 which received 0.7 mL/rat ...
متن کاملCrocin Acting as a Neuroprotective Agent against Methamphetamine-induced Neurodegeneration via CREB-BDNF Signaling Pathway
Methamphetamine (METH) abuse causes neurodegeneration. Medicinal herb such as crocin has neuroprotective properties. The current study evaluates the role of CREB-BDNF signaling pathway in mediating the neuroprotective effects of crocin against METH-induced neurodegeneration in rats. Sixty adult male rats were divided randomly into group 1 and group 2 which received 0.7 mL/rat ...
متن کاملPharmacological evidence for lithium-induced neuroprotection against methamphetamine-induced neurodegeneration via Akt-1/GSK3 and CREB-BDNF signaling pathways
Objective(s): Neurodegeneration is an outcome of Methamphetamine (METH) abuse. Studies have emphasized on the neuroprotective properties of lithium. The current study is designed towards evaluating the role of Akt-1/GSK3 and CREB-BDNF signaling pathways in mediating lithium neuroprotection against METH-induced neurodegeneration in rats. Materials and ...
متن کاملEffect of vitamin D supplementation on CREB-TrkB-BDNF pathway in the hippocampus of diabetic rats
Objective(s): Cyclic AMP (adenosine monophosphate) response element-binding protein (CREB) and Brain-derived neurotrophic factor (BDNF) are reported to broadly involve in learning capacity and memory. BDNF exerts its functions via tropomyosin receptor kinase B (TrkB). BDNF transcription is regulated by stimulating CREB phosphorylation. The CREB-TrkB-BDNF pathway is rep...
متن کامل